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SUMMARY

The author has previously used the stochastic mcdel of
radiative transfer to obtain the diffusion matrix consisting
of the reflectance and the transmittance operators in a finite
plane-parallel atmosphere of arbitrary stratification. When
this method is applied to the distribution of emisslon sources
within the medium, theemergent intensities can be computed
without actually solving the equation of transfer.

In the present paper, using auxiliary equations in
conjunction with the Milne integral equations, the author
derives the diffusion matrix slong with the extenéion
concerning the Neumann solution as given by Busbridge. 1In the
case of diffuse reflection and transmission of parallel rays,
the solutions are expressed in terms of a pailr of scattering
and transmission functions for each of the two boundaries of
the atmosphere. Then these global functions are given by x*
and Y' functions that are equal to éhose previously found by
Bellman and Kalaba. Whereas the diffusion matrix formally has
a somewhat similar appearance to a map ylelded by Preisendorfer,
the mathematical development 1s different.

If the optical properties of the medium are constant
throughout the atmosphere, the reflectance and transmittance

operators obtained here reduce to those given by Sobolev.
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"ON THE DIFFUSION MATRIX OF RADIATIVE TRANSFER

I. INTRODUCTION
In 1942 Ambarzumian [1) published a mathematical method

for solving the homogeneous first integral e&uation of Milne.
Basing hls work on the 1ldea Sf linear aggregation, he red&ced
the solution of the Milne equatilon to fhat of 1ts auxlllary
equation, which in turn leads directly to th. H equation (sée
Kourgano}f [22]): In a second paber, Ambarzumian [2] treated
the éame problem from a physical viewpoint. By means of the
principle. of invariance, he obtailned a nonlinear integral
equatiqn in the H function diﬁectly through physical analysis
cf the diffuse reflectlon and transmission bf light, without
actually solving the homogeneods Milﬁe equation for the source
function. Ingenlously extendlng the invarlance method,
Chandrasekhar [15] formulated a complete set of principles of
invariance in a finite homogeneous atmosphere and applied it
to. various transfer problems. The requisite integral equations
fop the scattering and tranémission functions were derilved from
the above set of invariance principles in connection with the
equation of transfer. .
By means of the Ambarzumlen technique, the solution of the

nonhomogeneous Milne equation can be expressed in terms of the

H functilon for vertaln special forms of the distribution of
. emlssion sources acting in the medium. The technique plays an
important role in the solutions of transfer problems from the

practical viewpoint. Furthermore, as Busbridge [.3] evphasized,
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the technique becomes more powerful when it 1s connected with
thé theory of the N solution. The auxiliary equation for any
given problem reduces to the first integral equation of Milne
for the diffuse reflection and transmission of a parallel beam
of radiation by a finite layer. From the mathematical point of .
view, the Ambarzumisn technique was ingeniously extended by
Busbrigge (12,13] and was applied to various transfer problems
of astrophysica} interest by Busbridge [12,13; and Ueno [é9].
Ambarzumian's physical method based on the principle of
invariance. has ‘been applied by pusbbidge [11,14) and Stibbs
[14,25] to problems of line formation in ‘the Milne-Eddington
model with cohereny and noncoherent scattering.
Recently, developing the idea of the invariance principle
of Ambarzumian [2], Bellman and Kalaba [3) stated the
principle of invariant imbedding. The funcpional relationships
among the members of the class are found by imbedding the
original process within a family of processes of similar nature
and obtaining an invariant process. Whereas the classical
' approaches reduce problems to the éolutions of systems of
linear eqﬁations; the invariant-imbedding technique reduces
problehs to the iteration of nonlinear transformations. The
principle of invsriant imbedding led not only to new
analytica; functions of radiative transfer (Bellman and Kalaba
[2,31), neutron diffusion (Bellman, Kalaba, and Wing [8,10]),
random walk and scattering (Bellman and Kalaba [6]), adaptive

processes and random transmission (Bellman and Kalaba [7]), and
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problems of Stefan type (Beilman and Keslaba [9]), but also to
those of wave propagation (Bellman.and Kaiaba (51).

By means of thne Chandrasekhar—Wick method, and with th;
aid of Chandrasekhar's extension ‘of the physical method based
on the invariance principle, the following kinds of transfer
problems have been solved: line formation 1n planetary atmos—
phere (Chandrasekhar (15]), line formation in the Schuster
model (Chandrasekhar [15]); emitting atmospheie (Horak [18],
Horak and Lundquist [19]), and molecular absorbing atmosphere
(King [21]).

Allowing for the map consisting of complete reflectance
and complete tran§m1ttance operators in 1nhomogenéous one-—
parameter carrier space, Preisendoffer {23] obtained the
invariant imbedding relation for radiative transfer and
neutron transport contexts. Furthermore, the functional
relations for reflectance and transmittance operators were
derived in a manner similar to that used by Cﬁandraéekhar for
the hemogeneous case [24]. The polarity of the two operators
is elpcidated because of the inhomogeneous optical properties
of the medium.

In recent years, 1ntroéuc1ng the probability concept into
the theory of radiative theory, Sobolev [27] has treated many
subjJects from the statistical point of view, 1nc1uhing various
kinds of transfer problems: pure scattering [27], line
formation with coherent apd noncoherent scattering in a semi-—
infinite homogensous medium [27], diffuse reflection in a
semi-infinite inhomogeneous medium. [26], diffuse reflection in

& finite homogeneous medium [28], and others [27].
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Recently, assuming that multiple scattering of a photon
as the carrler ér radiant.energy 1s a random process of
Markovian type, Ueno used a stochastic hpproach in the study
of various problems of radiative transfer: Milne's problem
(30], line formation in semi~infinite atmospheres with coherent
and noncoherent scattering (31,32], diffuse reflection and
transmission in a finite homogcncoﬁs and lnhomogeneous layer
(33,34%], and a Markovian property of radfative vransfer [35].
Through the probabilistie technique, the integro-differential
equation for the emission _probability distribution can be
dgrived from the Chapman—Kolmogoroff equation, and the integral
transform of the probabilistic equation can be used to obtain
the angular distributions of the emergent radiations without
actually solving the equation of transfer. ' It is of interest
to mention that the derivation of the S and T functions
from the probabilistic equation by thé stochéstic approach 1s
similer in part to that used recently by Feller [16] on
boundaries and lateral conditlons for the Kolmogoroff
differehtialiequation.

In a preceding paper [37], based on a stochastic model of
radiative transfer, the author obtained the diffusion matrix
conslsting of reflectance and transmittance operators. In the
present paper, however, we derive the diffusion matrix from the
auxiliary equations that play a major role in the Ambarzumian
technique in connection with the Milne equations (ef. Hopf [17],
Busbridge [13]). In subsequent papers, the diffusion matrix
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will be applied to the various transfer problems of current
interest in s finite inhomogeneous medium.

Wheveas, In the context of the operational form, the map
due to Preisendorfer [23] seems to be somewhat similar to the
diffusion matrix, the mathematical procedure is different. 1In
contrast to Preisendorfer's approach, which can be patterned
after the rrocedure used by Chandrasekher for a finite homo-‘
geneous atmosphere, our technique is baséd on the use of
auxiliary equations for the source'?unctions.

Finally, 1t should be mentioned that, in addition to the
methods stated above, the Laplace~transform method (see Hopf
[17], Kourganoff [22], Huang [22], .and Busbridge [13]) is also

used in transfer »nroblems.

II. THE EQUATION OF TRANSFER

ﬂey Iv(rv,u). be the.specific intensity of v radiation
at the optical depth 7, in the direction cos dt. In con—
sidefing the transfér problem of radiation in a plane-parallel
1nﬁomogeneous atmosphere of finite optical thickness Tv’l,
for simplicity we shall restrict our discussion to coherent
and l1sotropic scattering. Then, for convenience, we suppressed
the subscript v of the various quantities.

The equation of transfer appropriate to the present case

is wriliten in the form

(2.1) K 'd_Ic(l'%‘LE)' = I(7,n) - J(v),

where the source function J(T) 1is
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(2.2) J(t) = %- w(-r)f+1 I(t,n')dr' + 31(1).
. -1

In equation (2.2), w(t) 1s the albedo for single scattering,
and.,B1(1) is the distribution of emission sources within
the atmosphere.

Following the notation of Chandrasekhar in [15), we shall
denote the intensity of radiation at the level T directed
toward the surface T =0 by I(7,+4), 0<# <1, and that
directed toward-the surface T = ;1 by I(t,—K), O0< K1
Let radiation of intensity I(0,— ), O< k < 1, be incident
on the surface T = 0. in the direction -4, and let ;adiation
of intensity I(v,,+ k), 0<p < 1, be incident similarly on
the surface T = Ty in the direction + K.

Then, allowing for the formal solution of equation (2.1)

subject to the boundary conditions given above, namsly’,
. T, =7
(2.3) I{r,+ 1) = I{7,,+ u)exp(~ ——)

+ [ s(e)exp(- LTl
J
(2.4)  I(r,—u) = I(0,~ k)exp(- T)

T .
+ f J(t)exp(- Lﬁ-z)dft.
0

from (2.1) we get the first integral equation of Milne
governing J(t):
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(2.5) (1 - w(x)A) (3(t)) = B(x),

where 1 1s the identity operator, X 1s the %truncated Hopf

operator
. T .

(2.6)  Ele(e)) = 3 [ e(e)m(Is - w))as,

0 o
and B(7) ‘15

. : 1 ’

(2.7)  B(¥) = By(v) + 3 u(n) [T 1(0,- wiexn(= Friawt
. * o '

' 1 ‘rl Ty =T
+ 5 w(7) Jr I(1l,+ K')exp(— -gn—-)du'-
0

In equation (2.5), El(r) 1s the first exponential integral:
(28)  Ey(0) = [ exp(- D
B 1 p(- )
0

While in the homogenecus case B(t) 1s a known function
in any particular problem, the quantity Bl(rl in the case of

inhomogeneous distribution of emission sources is given by

(2.9) Bl(w)'=fl'9uﬁ [frl B, (t,+ k)exp(~ & TT)at
0 T 0

+[T Bl(t,- u)exp(~ I-E—I’-)dt] .

III. THE AUXILIARY EQUATIONS

In the theory of radiative transfer based on the
Ambarzumian technique, the auxiliary equation plays an

important role. °
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In the case of a finite inhomogeneous atmosphere, the

auxiliary equations are expressed¢ in the forms .

(3:1) (1 - w(D)E)lp(sst,7y)) = wirdexp(- 5),
’ » 'l'1 == s
(3.2) (2 = w(m)A]1 (p (kst,7,)) = w(T)exp(~ =) .

Physically, the function p(M}T.Tl) corresponds to the
source function due to a parallel beam of radiai.on incident
on the surface T = O in the direction —j, and p’(TJT,Tl)
corresponds to that due to similar parallel rays on the sur-
face T = 1, 1in the direction + W. From the probabilistic
viewpoint, the function p(u;v,Tl) represents the probability
that a photon absorbed ét the level T will reappear in the
~ direction + K as radiation.emerging from the surface T = O,
and p*(u;w;Tl) is the probability that a photon absorbed at
the level T will be reemitted in the directibn — U as
radiation escaping from the surface T = Tq e Mathematically,
the probability p(m;T,7,)dit 1s the probability of finding u
in the range (x,+ + K1) at the level T.

Oon différentiating the auxiliary equations with respect

to 7y, after some argumenrt we have

ap(u;T,t,) 1
(3'3) "‘37—1_"1_ - ‘:%' p(“’i"ll"'-\‘) f p*(l.l-'j'l','l'l)'qﬁ';‘,
0
3p" (k3 7,7y) 1 e
(3.4) ————g;i i & TR (u;T.Tl)
» 1 .
+30 (u:'rl.'rl)f P (w57,7, )8
5 .
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Equations (3.3) and (3.4) can also be obtained by means of the
probabilistic method [3%] and the jnvariant imbedding techpique
[36]. PFurthermore, the golutions are found to depend on four
functions x(u,wi)» Y(u,11), x*(u,11), and Y'(u,tl): which
are connected to each other by the principie of reciprocity
(See (341). Mathematically speaking, the source functions
é(u;r,xl) and p*(u;T,Tl) are the N golutions of the

auxillary equations (3.15 and (3.2) (see Busbridge (131).

IV. DIFFUSION MATRIX
With the aid of equatlons (2.3) and (2.4), the emergent
intensitles from the atmosphere I(0,+ w) and I(7q,— u) are

respectively provided by

(4.1) 1(0,+ 1) = I(T,+ u)exp(- :—}) + I (0,+ K),
(h2) Iy ) = 100, Wexpl= g2) + T'lsym ),
where
(h3)  Tleaw) = [ at)exl- PE

0
@ay - = [ L a(t)exp(- B

0

T
t,\dt
=f 1 J(vy - t)exp(— E)%_'
0

Following Busbridge [13], we call equations (4.3) and (4.4)

the 7, transforms of J(t).
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When
(4.5)  B(r) = aB'(x) + vE (1, — 7),-
and
(4.6) (2 - w(x)KI (3%(t)) = BY(7),
(4.7) (1= w(x)ELP(8)) = BP(ry ~ 7),
then the solution,of l-equation (2.5) is written in the form
(4.8)  3(7) = adi(7) + v3%(7).

Furthermore, the emergent intensities I’(0,+ #) and

*
I ('rl,-u.) are glven by
T
(5.9) 104 w) =a [ b sH(t)exn(~ £)8

0

Ty 2 £ dt

+ bf J°(t)exp(- E)T’
0

Tq b T — t
(4.20)  1"(r—n) = a [} rM(t)exp(- L)l

0

T T, — ¢

+ bf E Jg(t)exp(— 1“_
()

dt
)p"

On multiplying equation (4.6) by p(u;'r,'rl)/w(-r)u and
integrating with respect to T over (0,11), we get

T 1
a1y [ (P57, 7)) Tt T = sw, 0K, (3%(6)) 19T
0 .

T 1l
7) d
=f > p(“’i";"}_)%f} =‘_f’_ .
0
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On the other hand, if we multiply equatiéon (3.1) by
Jl(r)/w(f)u and integrate with respect to T over (0,11),

we get

1 .
(4.12) _['11 (23 plust,7y) - Jl('t')7f.l,[p(u-:1:,'r1)]]%:E
0)
1 TydT
= [ J*(v)exp(— E)T
0

Allowing for the symmetrical property of the X operator
(ef. Busbridge [13]), we have

-

f'rl fl(t)It[fz(t')]dt =f11 fa(t)xt[fl(t')]dt,
0 0

and using equations (4.11) and (4.12), we obtain

R T L
Y 0

Similarly, using equations (3.1), (3.2), (4.6), and. (4.7),

we get

raw) [ s x)exp(- 2

. f 1 p (“': ’11)_$ ) dT
0
T
15) [ P(w)exp(- D - f 1 p(usy - 1.11)-1—(-)-“3.,11, &
0 . 0

(4.16) le J2(11 - t)exp(— &)i f E p (H;7— ‘rl)
- 0

Then, using equations (4.9), (4.10), and (4.13)—(4.16),
we can write the emergent intensities I*(o,+ i) and I*(Tl,— n)

in the forms
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T
(4.17) I (0,+ 1) = af p(k;~, 11) 1 ‘ff

0
. T 2
+ bf Ypluty - g }31 e

(1.18)  fep-w) = a [ et eEE) &
0

Ta » 2
+ bJ[ 1 P (u;11 - T’?l)w f —

From equations (4.17) and (4.18) the emergent intensities

are given in terms of the diffusion matrix as followss

I(O_o+ 'J) LO(T)
u' ]
(4.19) '(1(-:1,- u)> D, Ll(_r))

where

(4.20) Lo('r)-—-(-(-)-)- (%) = bB ) —

In equation (4.19), the diffusion matrix D, 1s written in

V)
the form
»*
1
n oo . V3 u
(4":1) Du 6 .ﬂi/ )
W K

where the reflectance and the transmittance operators are

(h22) yle(t)) = [ 1 pwst,ry ()8,
0

(4.23) fu[f(t)] -=f'rl p*(u:t,-rl)r(t)g-t-,
0
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Ty &
(.24) C5(£(8)) nf Lo (g - b )e(e)SE,
0

(4.25) j;[r(f,)] ..{Tl p(i;7, - t,'rl)r(t)%.

Thus the integral operational matrix Aj; given by the
prctabilistic method in the preceding paper [37] is now
derived from the auxiliary equations and the first integral
'equation of Milhe.

As a speclal case, we shall conéider the diffuse
reflection and transmission of a parallel beam of radiation
by a finite inhomogeneous atmosphere.

Let a parallel beam of radiation of intrinsic flux Fb
fall on the surface T = 0 in the direction - Bq» and let a
parallel beam of radiation of intrinsic fiux F1 fall on the
surface T = Ty in the direction + By Then, recalling

equation (4.20),
F F
Lo(t) = 32 exp(- Bg)r La(7) = 7 exn(- i)

and using equation (4.19), we determine that the emergent

intensitles are given by
. ) 1, Ty
(§.26)  _{ust it) = 5 Fi8(n — 1, Jexp(- u_1.)

F T E
0 1l
+ o2 [ plwsnydexp(- LSS
0

F T
+ -qlf 1 p(sTy — 7,7, )exp(- ;Lll)%l.
0
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(5.27)  I(ty— ) = & B8 — b, )exp(~ L)
¥ (Ty— ) =3 ¥y Yo/ XPAT g

F Te » .
+ 2 [ B g Jexn(~ 88
* ~0
0
F To N
+ -ulf 1p (R3Ty = 7,7, Jexp(- ﬁ!i)gul'
0

Writing

T
(4.28) f 1 p(K;7,7, Jexp(— z)at = S(Tyikgk),
0
0 .

1 .’
(4.29) Jf : P(u;?l - Tt?l)exP(-'ﬁ;)dT = T(Tliulﬂu)l
0
. Tl * T . »*
(4.30) f P (k;7ty — 7,7 )exp(— -q)_ﬂ'« = 8 (%yikq,H),
5 _

] |
w31 [ ey Jexp(= g)aw = 17 (rpsugu),s
0

and allowing for the principle of reciprocity (ef. [34]), 1.e.,

: S(le-.uo) = S(Tliuo:u)t
* *
(4.32) S (113u3u1) =3 (Tliul:u):
*
T(Tliuuu'o) = T (1:13“'0:“):

we obtain
’ 1l . Tl
(4.33) I{0,+ 1) = 5 Flé(u - ul)exp(— EI)

Fo Fy o
+ qp S(rqskakg) + g T (75H,04),
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T

. . 1- L)
(h.38)  I(r,= W) = F PR = olexp(= )-
F F
+ ]rg' T(leﬂpﬂ-o) + ‘lﬁ]i 3.(71511;”-1)-

The emergent intensities (%.33) and (4.34) are equal to
those given in the preceding paper (37]. Fu;thermore, if the
optical properties of the medium are constant tﬁroughout the
atmosphere, the source functions p(u;r,rl) and .p'(ujf,fl)
are equal respectively to p*(ujrl - 1,11) and - p(u111 - 1,11).
In this case, the reflectance and transmittance ope}ators (4.22)

and (4.23) reduce to those ylelded by Sobolev [27].



OBLAKPAE



1.

2.

4,

5.

6.

7.

10.

11.

12.

RM-2T44—ARPA
17

REFERENCES

Ambarzumian, V. A., Diffusion of light by Elanetary
atmospheres, Astr. J., USSR, Vol. 19, 1942, p. 30.

» Diffuse reflection oi' 1ight by a
foggy medium, Doklady Akad. Nauk. SSSR, Vol. 38, 1943,
rp. 229-232.

Bellman, R., and Kalaba, R., On the principle of invariant
imbedding and propagation through inhomogeneous media,
Proc. Nat. Acad. Sci. USA, Vol. 42, 1956, pp. 629-632.

s On the pri ciple of invariant
imbedding and diffuse reflection from cylindrical region,
Proc. Nat. Acad. Sci. USA, Vol. 43, 1957, pp. 514-517.

» Functional equations, wave

propagation and invariant 1mbedd1ng, J. Math. and Mech.,
Vol. y 1959, PP 683—704 .

» Invariant imbedding, random

walk and scattering—II: discrete versions, J. Math. and
Mech., Vol. 9, 1960, pp. 411-420.

» Functional equations in
adaptive processes and random transmission, Trans. 1559
International Symposium on Circuit and Information Theor A
IRE Trans. on Circuit Theory, Vol. ¢T~6, 1959, pp. 271-282.

Bellman, R., Kalaba, R., and Wing, G. M., Invariant imbed—
dilng and neutron transport theory—IV; generalized
transport theory, J. Math. and Mech., Vol. 8, 1959,
pp. 575-58%4.

- » Invariant imbed-
ding and neutron transport in a rod of changing length,
Proc. Nat. Acad. Sci. USA, Vol. 46, 1960, pp. 128-130.

s Invariant imbed-

ding and mathematical physics I. particle processes,
J. Math. Phys., Vol. 1, 1960, pp. 280-308.

Busbridge, Ida W., Coherent and non-coherent scattering in
the theory of line formation, Monthly Notices Roy. Astr.
Soe., Vol. 113, 1953, pp. 52-66.

» Finite atmospheres with isotropic
scattering, Monthly Notices Roy. Astr. Soc., Vol. llg.
1955, pp. 521-5 ;s 1I, oy VOl. ’ 56) pp. 304-313%;
III, ibid., Vol. 117, 1957, pp. 516~520.



RM—2744—ARPA

18

13.

-

14,

15.

16,

17.

18.

19.

20.

21.

22,

23.

2‘*.

25.

26.

Busbrlidge, Ida W., The Mathematlcs of Radlative Trangfar,
Cambridge Tracts, No. H0. Cambridge, 1960.

Bustridge, Ids W., .and Stibbs, D. W. N., On the intensities
of Interlocked multiplet lines in the Milne—Eddington
model, Monthly Notices Roy. Astr. Soc., Vol. 11k, 1954,
pp. 2-16. A .

Chandrasekhar, 8., Radlative Transfer, Oxford University
Press, London, 19%0.

Feller, W., On boundaries and lateral conditions for the
Kolmogoroff differential equations, Ann. of Math., Vol. 65,
1957, rp. 527-570.

Hopf, E., Mathematical Problems of Radiative Equilibrium,
Cambrldge Tracts, No. 31, 153F.

Horak, H. G., The transfer of radlation bK an emittin
atmosphere, Astrophys. J., Vol. 116, 1942, pp. 477-490.

Horak, H. G., and Lundquist, C. A., The transfer of
radlation by an emitting atmosphere, II, Astrophys. J.,
Vol. 119, 1954, pp. 42-50.

Huang, S;-S., Some formulae for the emergent intensities
by the Laplace transformation, Ann. d'Astrophys., Vol. 15,

1952, pp. 352-358.

King, J. I. F., Radlative equilibrium of a line absorbing
atmosphere. I, Astrophys. J., Vol. 121; 1955, pp. 711-719;
II, 1b1d-, VO].. IEII, Ig ;6, pp- 272—297-

Kourganoff, V. (with Busbridge, Ida W.). Basic Methods in
"Iransfer Problems, Oxford University Press, London, 1952,

Prelsendorfer, R. W., Invariant imbedding relation for the
princiﬁles of invariance, Proc. Nat. Acad. Sci. USA,
Vol. 44, 1958: pp. 320-323.

, Functional relations for the R and T
operators on plane-parallel medla, Proc. Nat. Acad. Sci.
USA, Vol. 44, 1958, pp. 323-327.

Stibbs, D. W. N., On a problem in the éheory of formation
of absorption lines, Monthly Notiees Roy. Astr. Soc.,
Vol. 113, 1953, pp. 495—50%. . .

Sobolev, V. V., The transmission of radiation through an
inhomegeneous medium, Doklady Akad. Nauk. SSSR, Vol. Jil,




27.

28.

29.

30.

31.

22,

23.

34.

35,

36.

37.

RM-2T44~ARPA
19

Sobolev, V. V., Trapnsfer of Radlation Energy in the

Atmospheres of Stars and Planets, Moscow, 1950,

s, Diffusion of radiation in a medium of

fiulte optical thickness, Astr. J., USSR, Vol. 34, 1957,
pPp. 336-348. -

Ueno, S., The formation of absorption lines by coherent and

non—coherent scattering. II. The solution of the equation
of transfer by Ambarzumian's first method, Contr. Inst.
Astrophys. Kyoto, No. 62, 1956, pp. 1-18.

» The probabilistic method for problems of radiative
transfer. II. Milne's problem, Astrophys. J., Vol. 126,
1957, pp. 413-417.

., The probabilistic method for problems of radiative
transfer. III. Line formatlon by coherent scattering, -
J. Math. and Mech., Vol. 7, 1958, pp. 629-642.

» La méthode probablliste pour les problémes de
transfert du rayonnement. Formation non cohérente d'une
d'absorption dans les:modéle Miine-Eddington, Comptes
Rendus, Vol. 246, 1958, pp. 3593-3595.

» The probabilistic method for pvoblems of radiative

transfer. IX., Ann. d'Astrophys., Vol. 22, 1959, pp. 468-

483; XI, ibid., Vol. 22, 1959, pp. 484489

» The probabilistic method for problems of radlative
transfer. X. Diffuse reflection and transmission in a
finite inhomogeneous atmosphere, Astrophys. J., Vol. 132,
1960, pp. T29-~T45.

» The probabilistic method for problems of radlative

transfer. XII. On the Markov property of radiative transfer

and of neutron diffusion, to appear in Astrophys. J.

» Stochastic equations in radiative transfer by
invariant imbedding, to appear in J. Math. Analys. and Appl.

» The probab! listic method for problems of radiative
transfer. XIII. Diirusion matrix, to appear in J. Math.
Analys. and Appl.




?f‘"”‘

UNC]LASSW
o "g

UNCLASSIFIi

'
H

\

‘ '

‘

'



\5

‘UNCLASSM'

UNCLA %S]I]P T



